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Adiabatic methods may be used to find approximate reduced stationary distributions for the linearly damped
Duffing oscillator driven by correlated noise of finite bandwidth. Here we show that a stationary distribution
may be obtained which explains the insensitivity of the system to variations in damping coefficient and noise
color as observed in numerical simulations. Exact analytic results are obtained for parabolic potentials for
comparison.@S1063-651X~96!01306-2#

PACS number~s!: 05.40.1j

The macroscopic behavior of many physical, chemical,
and biological processes may be understood in terms of re-
duced models in just one or a few relevant variables. In
nonlinear dynamical systems exhibiting transitions from
regular to chaotic motion, such reduced models have been
central to allowing tractable analyses to be performed near
the critical region. A case in point is the Duffing oscillator
which has been used in the description of a number of phe-
nomena, including Rayleigh-Be´nard convection@1,2#, bifur-
cations in certain nonlinear electrical oscillators@3#, and vi-
brations of buckled mechanical beams@4#.

Recently the Duffing oscillator driven by a stochastic
forcing term of finite bandwidth has been of interest@5–9#. It
has been observed that the system is insensitive to the pre-
cise value of either the damping coefficient or the noise
color. Indeed, the approximate analytic expression for the
reduced stationary distribution of Wu, Billah, and Shinozuka
@9# appears to be independent of either of these parameters
and yet is in excellent agreement with numerical simulations.
We show that the adiabatic elimination method does, in fact,
yield a stationary distribution that depends explicitly on both
the damping coefficient and the noise color and demonstrate
the conditions under which there is no sensitivity to the exact
numerical values of these parameters.

We consider the system

ẍ1l ẋ1U8~x!5h~ t !, ~1a!

^h~ t !h~0!&5Dge2gutu, ~1b!

where l is a damping coefficient,U(x)5 1
2ax

21 1
4bx

4

(b.0) is the Duffing potential, andh(t) is an exponentially
correlated~Ornstein-Uhlenbeck! noise process with strength
D and bandwidthg. The system is different from that con-
sidered in stabilization problems@10# in that the noise here is
additive not multiplicative.

Putting ẋ5v, Eq. ~1! admits the Fokker-Planck equation
for the distributionp(x,v,h,t),
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We wish to find the reduced stationary distribution
s0(x)5 limt→`s(x,t), where s(x,t)5*dvdh p(x,v,h,t).
For this we require the evolution equation fors(x,t), i.e.,
we want to reduce Eq.~2! to the form] ts5Lss. We do this
in two steps using the methods of Refs.@11# and@12# by first
eliminating the noise variableh from the above Fokker-
Planck equation, followed by the velocity variablev.

The presence ofU8(x) in the expression forLa precludes
an exact elimination ofh. However, since we are primarily
interested in obtainings0(x) we may eliminateh in the
long-time limit as an expansion in inverse powers of the
noise bandwidthg. Denoting asLr the reduced operator ob-
tained after elimination ofh for t→`, we have the exact
formal expression@11#

Lr5La1D(
n50

`
1

gn ]v~La
3!n]v , ~3!

whereLa
3]v5@La ,]v#. The lowest two commutators in this

expansion are

La
3]v5]x2l]v , ~4a!

~La
3!2]v52l]x1@l22U9~x!#]v . ~4b!

These are sufficient to obtain the lowest-order corrections to
the stationary distribution due to the noise color, assuming
g→`, g@l.

It turns out that theU9(x) term in Eq. ~4! hinders the
elimination of the velocityv from Lr . To simplify the prob-
lem and allow some progress, we replaceU9(x) by the mean
value ^U9& it yields during the evolution ofx ~a ‘‘mean-
field’’ approximation @13#!. Then, keeping terms up to
n52 in Eq. ~3!, we may writeLr5L11Lv with

L152
]

]x
v1

]

]v
g~x!, Lv5l
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]v S v1Q
]

]v D , ~5a!
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If ^U9& is replaced byU9(x) these expressions are correct to
O(g22). Inclusion of higher commutators results in consid-
erable complications and makes the elimination ofv much
harder.

Using U5ev
2/4Q we now make the transformation

Hr52ULrU21, which we may write as

Hr5lB†B1ĀB1AB†, ~6a!

B5
v

2AQ
1AQ

]

]v
, B†5

v

2AQ
2AQ

]

]v
, ~6b!
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1

AQ
S g~x!1Q

]

]xD , Ā5AQ
]

]x
. ~6c!

Noting that the commutator ofA and Ā is @Ā,A#5U9(x),
we see that the system represented by Eq.~6! is analogous to
that of Brownian motion in an external field@14,15#.

The most rapid method of effecting the elimination ofv
from Hr is to use the stochastic version of the Rayleigh-
Schrödinger expansion developed in Ref.@12#. This gives
directly the reduced operator in powers of the inverse damp-
ing coefficient:

Ls5
1

l
ĀA1

1

l3 Ā@Ā,A#A1O~l25!. ~7!

The first term in this yields theO(l22) equation

]
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]

]x SU8~x!1
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]

]xDs~x,t !, ~8a!

D*5DS 12
^U9&
g2 D . ~8b!

The corresponding stationary distribution is

s0~x!5NexpS 2l
U~x!

D* D , ~9!

whereN is a normalization coefficient. The form ofs0(x) is
identical to that found by others@9# except for the explicit
appearance of the damping and noise-color parameters.

We may readily verify the correctness of the above sta-
tionary distribution in the white-noise limitg→` by solving
the Duffing oscillator problem Eq.~1a! with a white-noise
forcing term, ^h(t)h(0)&52Dd(t). The resulting Fokker-
Planck operator

L52
]
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]
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]

]v S v1
D

l

]

]v D , ~10!

corresponds to that of the Kramers-Klein equation of Brown-
ian motion theory@16#. The adiabatic elimination of the ve-

locity variable from it results in the Smoluchowski equation
to lowest order@14–16#, which is exactly Eq.~8! with D*
replaced byD. In other words, the limitg→` is correctly
reproduced by Eq.~9!.

This result explains the lack of noise-color dependence in
analyses of the Duffing oscillator power spectrum@5,6#. The
effect of color is only apparent at orderg22 in the band-
width, which in the limitg→` is a small correction. The
analysis also shows that to orderg22 we may replace the
colored-noise source in the Duffing equation~1a! by a white-
noise source of noise strengthD* . This color-modified, or
effective, noise strength contains only contracted information
of the original colored-noise process but simplifies consider-
ably the handling of the Duffing oscillator problem.

The above expression fors0(x) further explains the ex-
cellent agreement found by Wu, Billah, and Shinozuka@9#
between their approximate stationary distribution, which was
independent of the damping coefficient~and of the noise
color g), and their numerical simulations. In the large-
damping limitl→` the normalization coefficientN in Eq.
~9! may be evaluated by the method of steepest descents
@17,18#. Since the Duffing potential is symmetric,
U(2x)5U(x), it has two minima atx56Auau/b for
a,0 and just the single minimum atx50 for a.0 ~we
ignore potentials for whicha50). Denotingm51 or 2 as
the number of minima ofU(x) we obtain the asymptotic
result

s0~x!;S lU09

2pD*m2D1/2e2l@U~x!2U0#/D* , ~11!

where (U0 ,U09) is (2a2/4b,2uau) for a,0 and (0,a) for
a.0. From this,

]s0

]l
}S 1

2Al
2

Al@U~x!2U0#

D* D e2l@U~x!2U0#/D* , ~12!

with the consequence that

lim
l→`

]s0

]l
50. ~13!

In other words, for large damping the stationary distribution
s0(x) becomes independent ofl altogether and the dynam-
ics of the oscillator becomes concentrated near its attracting
fixed points.

The stationary moments

^xn&5E
2`

`

dx xns0~x! ~14!

may also be evaluated in the asymptotic limitl→` by
steepest descents@18#. Whena,0 we find

^xn&5~ uau/b!n/2 ~15!

for n even and^xn&50 for n odd. This approximation is
good when the two minima are as far apart as possible, i.e.,
uau@b. Whena.0 ,
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^xn&5
1

Ap
S 2D*la D n/2GS n11

2 D ~16!

for n even and again̂xn&50 for n odd. In particular, the
second moment is

^x2&5D* /la. ~17!

The above asymptotic results should work best when
g@l, ^U9&!g2, andl is large.

Notice that Eqs.~16! and ~17! are the exact moments if
a.0, b50 given in Eq.~9!. In fact, forb50 we may effect
an exact reduction of the full Fokker-Planck equation~2! to
give exact expressions for both the stationary distribution
and the moments, which we may use to test the asymptotic
results above. Since the problem is then in effect a linear
Ornstein-Uhlenbeck process it should, in principle, be solv-
able by other methods of adiabatic elimination. When
U(x)5 1

2ax
2 (a.0), we have

La52]xv1]v~lv1ax!. ~18!

We may readily show by induction that the commutators in
Eq. ~3! may be expressed entirely in terms of]x and ]v .
Thus, putting

~La
3!n]v5cn]x1gn]v , ~19!

we find

~La
3!n11]v5gn]x2~lgn1acn!]v . ~20!

This is true forn50,1 and hence for alln. Equations~19!
and ~20! yield the linear difference equation

gn121lgn111agn50, ~21!

with g051, g152l, and thecn sequencecn115gn , with
c050. Beyond the first two terms we have

g25l22a, g352l312la, g45l423l2a1a2,
~22!

and so on.
A closed expression forgn may be obtained, for example,

by using thez transform@19#

f~z!5 (
n50

`

gnz
2n, ~23!

for z complex. Multiplying Eq.~21! by z2n and summing
overn gives

f~z!5
z2

z21lz1a
. ~24!

This may be shown to ‘‘generate’’ the sequence~22! by di-
viding top and bottom byz2 and expandingf(z) as a series
in inverse powers ofz.

The inversez transform is

gn5
1

2p i R dzf~z!zn21, ~25!

where the contour encloses all singularities off(z). From
Eq. ~24!, f(z) has only the two simple poles at

z652
l

2
6
1

2
Al224a, ~26!

which using coshw52l/2Aa we may write conveniently in
the form

z15Aaew, z25Aae2w. ~27!

Evaluating the corresponding residues then gives

gn5
sinhw~n11!

sinhw
an/2. ~28!

Some algebraic manipulation shows that this formula cor-
rectly reproduces the sequence~22!.

Using Eq.~3! and the sequencegn , the reduced Fokker-
Planck operatorLr for the parabolic potential may be written
as in Eq.~5a! with

g~x!5ax1D(
n50

`
gn

gn11

]

]x
, Q5

D

l (
n50

`
gn
gn . ~29!

The transformation leading to Eq.~6! gives

A5
1

AQ
S ax1D*

]

]xD , Ā5AQ
]

]x
, ~30a!

D*5DS 12a(
n50

`
gn

gn12D , ~30b!

where the recurrence relation~21! has been used to write
D* . The operatorsA and Ā, with commutator@Ā,A#5a,
effectively define Brownian motion in a parabolic potential.
Titulaer @15# has shown that an exact elimination of the ve-
locity variable is possible for such a system. Using this result
we find

Ls5
1

lh

]

]x S ax1
D*

l

]

]xD , ~31!

where in our notationlh5(l1Al224a)/2a. The station-
ary distribution due to thisLs has exactly the form in Eq.~9!
but with an effective noise strength given by Eq.~30b!.

Inserting the formula forgn into Eq. ~30b! and using the
identity @20#

(
n51

`

rnsinhnw5
rsinhw

122rcoshw1r2
~r2,1!, ~32!

with r5Aa/g, gives the exact result

D*5DS 12
a

g21gl1aD . ~33!

With thisD* the exact moments (a.0, b50) have the form
given in Eq.~16!. In particular,
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^x2&5
D

la S 12
a

g21gl1aD . ~34!

Note that this expression is valid for arbitraryg and l al-
though the order in which we eliminatedh and v makes
sense only ifg.l ~more precisely, we require that the con-
dition D*.0 holds!.

Wu, Billah, and Shinozuka@9# have evaluated̂x2& nu-
merically for the parabolic potential. We may compare their
results to the exact values obtained from Eq.~34!. Identify-
ing the parameters used here to those of Ref. 9~denoting
these with an overbar! we haveg51/t̄, l5ḡ, a5ḡd̄, and
D5 1

2Q̄ḡ2. Two sets of values were used by the above au-
thors: ~i! t̄50.01, ḡ5100, d̄5Q̄51; and ~ii ! t̄50.01,
ḡ5100, d̄520.25, Q̄50.5. For these parameter values Eq.

~34! gives^x2&50.498 and̂ x2&50.0112 to three significant
figures for~i! and~ii !, respectively. These are identical to the
values obtained by the numerical evaluation.

The asymptotic formula Eq.~17!, which requiresg@l,
a!g2, andl large, giveŝ x2&50.495 and̂ x2&50.009 85,
respectively, for the two sets of parameters above, where we
have used̂U9&'a. Actually, in neither case~i! nor ~ii ! is
the conditiong@l (1/t̄@ḡ) met and in~ii ! the value for
a is quite large compared tog2. Nevertheless, the agreement

is reasonable. Of course, this agreement improves when the
required conditions are met. For example, wheng510,
l55, anda5D51 we obtain 0.1987 and 0.1980 for the
exact and asymptotic second moments respectively; whereas
for g5100,l510, anda5D51 the difference occurs only
in the seventh decimal place. In this case we have effectively
^x2&5D/la. Small values ofb do not affect the approxima-
tion. For larger values ofb the asymptotic condition requires
larger values ofl to compensate. Note also that the value of
the colored-noise strengthD does not affect the approxima-
tion at all.

In summary, we have derived a reduced stationary distri-
bution for the color-driven Duffing oscillator, which contains
a dependence on both the damping coefficient and the noise
color. We have found that for large damping and weak color
the stationary distribution becomes insensitive to the values
of either of these parameters. This explains the excellent
agreement observed between analytic approximations and
numerical simulations performed by others. For parabolic
potentials we have obtained the exact analytic reduced sta-
tionary distribution, allowing approximations to be tested di-
rectly.
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