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Stationary solution for the color-driven Duffing oscillator
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Adiabatic methods may be used to find approximate reduced stationary distributions for the linearly damped
Duffing oscillator driven by correlated noise of finite bandwidth. Here we show that a stationary distribution
may be obtained which explains the insensitivity of the system to variations in damping coefficient and noise
color as observed in numerical simulations. Exact analytic results are obtained for parabolic potentials for
comparison[S1063-651X96)01306-2

PACS numbeps): 05.40:+j

The macroscopic behavior of many physical, chemical, 9
and biological processes may be understood in terms of re- La=—— v+ 5[?\0+U’(X)], (2b)
duced models in just one or a few relevant variables. In
nonlinear dynamical systems exhibiting transitions from
regular to chaotic motion, such reduced models have been
central to allowing tractable analyses to be performed near
the critical region. A case in point is the Duffing oscillator
which has been used in the description of a number of pheVe wish to find the reduced stationary distribution
nomena, including Rayleigh-Bard convectiod1,2], bifur-  oo(X) =lim_.a(x,t), where o(x,t)=fdvdy p(x,v,7,1).
cations in certain nonlinear electrical oscillat¢8, and vi-  For this we require the evolution equation fa(x,t), i.e.,
brations of buckled mechanical beafds. we want to reduce Ed2) to the formd,o=L ,o. We do this

Recently the Duffing oscillator driven by a stochasticin two steps using the methods of Refs1] and[12] by first
forcing term of finite bandwidth has been of intergst9). It~ eliminating the noise variable; from the above Fokker-
has been observed that the system is insensitive to the prBlanck equation, followed by the velocity variahle
cise value of either the damping coefficient or the noise The presence di’(x) in the expression fok , precludes
color. Indeed, the approximate analytic expression for thén exact elimination of;. However, since we are primarily
reduced stationary distribution of Wu, Billah, and Shinozukainterested in obtainingro(x) we may eliminates in the
[9] appears to be independent of either of these parametelgng-time limit as an expansion in inverse powers of the
and yet is in excellent agreement with numerical simulationsnoise bandwidthy. Denoting ad_, the reduced operator ob-
We show that the adiabatic elimination method does, in facttained after elimination ofy for t—«, we have the exact
yield a stationary distribution that depends explicitly on bothformal expressiofl1]
the damping coefficient and the noise color and demonstrate
the conditions under which there is no sensitivity to the exact ~
numerical values of these parameters. L=LatD Z —3y(L3)"d, ©)

We consider the system n=07%

d J J
Lb:7£ 7I+D7£), Li==o 7 (20)

whereL} d,=[La,,d,]. The lowest two commutators in this
K+ Ax+U ()= 7(b), (19  expansion are

L2 d,=dy—N\d,, (4a)

t)7(0))=Dye ", 1b
(n(t)n(0))=Dye (1) (L)23,= =N+ [N2=U"(x)]d, - (4b)

where \ is a damping coefficient,U(x)=2ax?+ibx*  These are sufficient to obtain the lowest-order corrections to
(b>0) is the Duffing potential, ang(t) is an exponentially ~the stationary distribution due to the noise color, assuming
correlated(Ornstein-Uhlenbecknoise process with strength y—%, y>A\.

D and bandwidthy. The system is different from that con- It turns out that theU”(x) term in Eq.(4) hinders the
sidered in stabilization probleni&0] in that the noise here is €limination of the velocity from L, . To simplify the prob-

additive not multiplicative. lem and allow some progress, we replat&x) by the mean
Puttingx=v, Eq. (1) admits the Fokker-Planck equation value (U”) it yields during the evolution ok (a “mean-
for the distributionp(x,v, 7,t), field” approximation [13]). Then, keeping terms up to

n=2 in Eqg.(3), we may writeL,=L,+L, with

i 0 N 9
Ep_(l—a_"l-b"'l-i)pv (2a) Ll—__UWL%g(X), LU—7\5 U+Q5, (53

ox
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D/N A2 9 locity variable from it results in the Smoluchowski equation
9e)=U"(x)++| = _2) ' (5b)  to lowest ordef14—16, which is exactly Eq(8) with D*
vy replaced byD. In other words, the limity— is correctly
D N A2 (U reproduced by Eq9).
Q= x( 1- ; + 7 — 7) . (50 This result explains the lack of noise-color dependence in

analyses of the Duffing oscillator power spectr[By6]. The

. _2 .
If (U") is replaced by)"(x) these expressions are correct to €fféct of color is only apparent at order= in the band-
O(y~2). Inclusion of higher commutators results in consid-Width, which in the limit y—o is a small correction. The

- =2
erable complications and makes the eliminatiorvofiuch ~ 2nalysis also shows that to order© we may replace the
harder. colored-noise source in the Duffing equatida by a white-

noise source of noise strengf*. This color-modified, or
effective, noise strength contains only contracted information
of the original colored-noise process but simplifies consider-
Hrz)\BTB+HB+ABT, (6a) ably the handling of th.e Duffing oscillator probllem.

The above expression fary(x) further explains the ex-

Using U=e"“? we now make the transformation
H,=—UL,U{ 1, which we may write as

J cellent agreement found by Wu, Billah, and Shinoz{i&h
— \/6_ (6b) between their approximate stationary distribution, which was
v independent of the damping coefficie@@nd of the noise
color y), and their numerical simulations. In the large-
1 d — d damping limithA — o the normalization coefficiem¥ in Eq.
A= \/——(Q(X)JFQ&), A= \/65- (60 (9) may be evaluated by the method of steepest descents
Q [17,18. Since the Duffing potential is symmetric,
Noting that the commutator oA and A is [A,A]=U"(x), U(_X):U.(X)’ I ha_ls two minimaatx= = Vlal/b- for
we see that the system represented by(Bxjs analogous to  &<0 @nd just the single minimum at=0 for a>0 (we
that of Brownian motion in an external fiefd4,15. ignore potentials for whicta=0). Denotingu=1 or 2 as
The most rapid method of effecting the eliminationiof ~the number of minima oU(x) we obtain the asymptotic

from H, is to use the stochastic version of the Rayleigh-result
Schralinger expansion developed in Ré¢f.2]. This gives b 12
directly the reduced operator in powers of the inverse damp- cro(x)~( 0 ) e~ MU()-UgliD* (11)

ing coefficient: 2mD* u?

9 t__Y
\/6&0' B 2\/6

B

v
2\Q

1— 11— _ where U,,U}) is (—a?/4b,2|a|) for a<0 and (0Oa) for
-_ el 5 0.Uo ;
Lo )\AA+ )\3A[A’A]A+O()\ )- @ a>0. From this,
The first term in this yields th@©(\ ~2) equation _
y (A% eq o0 (1 AMUOO=Uol| 100 ugio* 12
* N\ 2N D* '

J _ 190 , Jd
o =1 U+ = fo(xt),  (8a .
with the consequence that

. <UH>
D*=D|1- vk (8b) i aoo_o 13
)\[noox =V. ( )
The corresponding stationary distribution is
U(x) In other words, for large damping the stationary distribution
oo(X)= Nexp( -\ _*) (9) _ao(x) becomgs independent nfaltogether and thg dynam-.
D ics of the oscillator becomes concentrated near its attracting

fixed points.

whereN is a normalization coefficient. The form of;(x) is The stationary moments

identical to that found by otheld®] except for the explicit

appearance of the damping and noise-color parameters. w
We may readily verify the correctness of the above sta- (x"y= f dx X"oo(X) (14)

tionary distribution in the white-noise limig— oo by solving -

the Duffing oscillator problem Eq.la) with a white-noise

forcing term, { 7(t) 7(0))=2D&(t). The resulting Fokker- mMay also be evaluated in the asymptotic limit-c by
Planck operator steepest descent$8]. Whena<0 we find

(x"y=(lal/b)"? (15
X \ v’ (10

Jd 0 0 D ¢
L=——v+—-U'(X)+rA—|vt

Jdv Jdv ) ) o

for n even and(x"y=0 for n odd. This approximation is

corresponds to that of the Kramers-Klein equation of Brown-good when the two minima are as far apart as possible, i.e.,
ian motion theonf16]. The adiabatic elimination of the ve- |a|>b. Whena>0 ,
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2D* n/2

Aa

T n+1
2

(16)

1
(XM= N

for n even and agaix"y=0 for n odd. In particular, the
second moment is

(x?)=D*/\a. (17)
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where the contour encloses all singularitiesdi(fz). From
Eq. (24), ¢(z) has only the two simple poles at

1

A
Z,=— E"'E\/)\Z 4a,

(26)

which using cos=—\/2\/a we may write conveniently in
the form

The above asymptotic results should work best when

y>N\, (U"y<9?, and\ is large.

Notice that Eqs(16) and (17) are the exact moments if

a>0,b=0 given in Eq.(9). In fact, forb=0 we may effect
an exact reduction of the full Fokker-Planck equati@hto

give exact expressions for both the stationary distribution _
and the moments, which we may use to test the asymptotic Gn

zZ.= \/ae"", 7z =\ae ™. (27
Evaluating the corresponding residues then gives
sinhw(n+1) 2
e 29

results above. Since the problem is then in effect a linear
Ornstein-Uhlenbeck process it should, in principle, be solv-Some algebraic manipulation shows that this formula cor-
able by other methods of adiabatic elimination. Whenrectly reproduces the sequen@).

U(x)=1ax? (a>0), we have

L,=—dw+d,(Av+ax). (19

We may readily show by induction that the commutators in

Eq. (3) may be expressed entirely in terms &f and d,, .
Thus, putting
(L2)"d,

=CpdxtOndy (19

we find
(L)1, =0nd

x_()\gn"'acn)av . (20)

This is true forn=0,1 and hence for alh. Equations(19)
and (20) yield the linear difference equation

On+2tAGny1tag,=0, (21)

with gg=1, g;=—\, and thec, sequence,, ;=
=0. Beyond the first two terms we have

Jn, With

gs=—N3+2\a, g,=\"-3\%a+a?

(22

U,=\"—a,

and so on.

A closed expression fay,, may be obtained, for example,

by using thez transform[19]

(23

¢><z>=n20 9,z ",

for z complex. Multiplying Eq.(21) by z~
overn gives

" and summing

2

$(2)= 22+ z+a’

(24)
This may be shown to “generate” the sequeri2@) by di-
viding top and bottom by? and expanding)(z) as a series
in inverse powers of.

The inversez transform is

dzgp(z)2" 1, (25

gn2|

Using Eqg.(3) and the sequenag,, the reduced Fokker-
Planck operatok., for the parabolic potential may be written
as in Eq.(5a) with

D
A

g(x)= ax+D2 i Q= Zg—n (29)

n+1 (9X

The transformation leading to E¢6) gives

1 d — J
A=\/—_Q ax+D 5), A=\/65, (303
D*=D (1 aE 2) (300)

where the recurrence relatid21) has been used to write
D*. The operatorA and A, with commutatorf A,A]=a,
effectively define Brownian motion in a parabolic potential.
Titulaer[15] has shown that an exact elimination of the ve-
locity variable is possible for such a system. Using this result
we find

D* ¢

L—la +
”_)\hﬁx ax N ox)’

(31)

where in our notation\,= (A +A%—4a)/2a. The station-
ary distribution due to this , has exactly the form in E49)
but with an effective noise strength given by Eg0b).

Inserting the formula fog, into Eq. (30b) and using the
identity [20]

S, prsinmmu LS 2<1), (32
= P sihmw= 1—2pcostw+ p? (p ),
with p=\/a/y, gives the exact result

With thisD* the exact momentsa(>0, b=0) have the form
given in Eq.(16). In particular,
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is reasonable. Of course, this agreement improves when the
. (34 required conditions are met. For example, whes 10,
A=5, anda=D=1 we obtain 0.1987 and 0.1980 for the

Note that this expression is valid for arbitragyand A al-  exact and asymptotic second moments respectively; whereas
though the order in which we eliminategl and v makes for y=100,\A=10, anda=D=1 the difference occurs only
sense only ify>\ (more precisely, we require that the con- in the seventh decimal place. In this case we have effectively
dition D* >0 holds. (x?y=D/\a. Small values ob do not affect the approxima-

Wu, Billah, and Shinozuk49] have evaluatedx?®) nu- tion. For larger values df the asymptotic condition requires
merically for the parabolic potential. We may compare theirjarger values of to compensate. Note also that the value of
results to the exact values obtained from Ef). Identify-  the colored-noise strength does not affect the approxima-
ing the parameters used here to those of Refdénoting ion at all.
these with an overbawe havey=1/7, A\=7y, a=yd, and In summary, we have derived a reduced stationary distri-
D=3Q»”. Two sets of values were used by the above aupution for the color-driven Duffing oscillator, which contains
thors: (i)_7=0.01, y=100, d=Q=1; and (ii) 7=0.01, a dependence on both the damping coefficient and the noise
y=100,d=20.25,Q=0.5. For these parameter values Eq.color. We have found that for large damping and weak color
(34) gives(x?)=0.498 andx?)=0.0112 to three significant the stationary distribution becomes insensitive to the values
figures for(i) and(ii), respectively. These are identical to the of either of these parameters. This explains the excellent
values obtained by the numerical evaluation. agreement observed between analytic approximations and

The asymptotic formula Eq17), which requiresy>\,  numerical simulations performed by others. For parabolic
a<y?, and\ large, gives(x?)=0.495 and(x?)=0.009 85, potentials we have obtained the exact analytic reduced sta-
respectively, for the two sets of parameters above, where Wgonary distribution, allowing approximations to be tested di-
have usedU”)~a. Actually, in neither casgi) nor (i) is rectly.
the conditiony>\ (1/7>+v) met and in(ii) the value for
a is quite large compared tg’. Nevertheless, the agreement  This work was funded by ESPRIT.

a
'y2+ yAta

)= |1
Aa
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